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1. Introduction

Structural elements with attachments that can be considered as a combination of mechanical
components with distributed and discrete physical parameters are encountered in many
engineering applications from aero-spatial and naval systems to ground vehicles and buildings.
Beams, bars, plates or shells to which bodies like devices, machinery etc., are attached, can be
given as examples of such elements. In general, these attached bodies individually have small
dimensions relative to the supporting structural elements, and hence, they can be considered as
lumped masses and springs. Such an approach often results in ‘‘1þ n’’ degree of freedom
models. These attachments restrict free motion of main element besides the constraints due to its
boundary conditions. For this reason, plates or beams with attachments are sometimes called
‘‘constrained systems’’. In some cases, supporting of continuous structural elements can be carried
out by attachments. Distributed parameter elements with attachments have been increasingly the
subject of interest, since deeper understanding of their dynamic, to be more exact, their
vibrational characteristics is very significant to guarantee the entire system’s performance. There
has been a vast literature on combined systems, in other words, on systems with attachment or
constrained systems in the last three decades, of which some presentative papers recently
published, will be briefly mentioned here.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Kukla and Posiadala presented the exact solution of the problem of free transverse vibrations of
Bernoulli–Euler beams with elastically mounted masses by using Green function method [1]. The
authors claim the solution they presented contains all possible end conditions, and can be applied to
beams with rigidly attached masses or intermediate pinned or elastic supports. Kukla et al. studied
the natural vibrations of two rods coupled by several translational springs [2]. They used the Green’s
functions method. Chan et al. studied the vibration of a simply supported beam partially loaded
with distributed mass [3]. In addition to natural frequencies, they also obtained the mode shapes.
Gürgöze [4], using Lagrange multipliers method, derived the frequency equation of a special
combined dynamic system consisting of a clamped–free Bernoulli–Euler beam with a tip mass where
a spring–mass system is attached to it. The author obtained the frequency equations of some simpler
systems by using limiting process. Mermertas- and Gürgöze treated a similar system in Ref. [2] using
the conventional method of separated variables [5]. Gürgöze [6] dealt with the determination of the
frequency equation of a fixed–free longitudinally vibrating rod carrying a tip mass to which a
spring–mass system is applied in-span. The author also gave an approximate formula for the
fundamental frequency based on Dunkerley’s procedure, and obtained frequency equation for some
simpler cases by using limiting process. Gürgöze and Erol studied the system considered in Ref. [7]
including the dampers in the attachment. They obtained an approximate formula for characteristic
values as well as an exact equation. They also investigated how sensitive the frequencies of the
system are to changing of parameters. İnceoǧlu and Gürgöze extended the work presented in Ref.
[2]. They studied the longitudinal vibrations of a mechanical system consisting of fixed–free rods
carrying tip masses to which many double spring–mass systems are attached across the span. Using
Green’s function method they derived a general formulation for the exact solution of the system
considered [8]. Gürgöze and İnceoǧlu examined the problem of determining the stiffness coefficient
of the spring to be placed at a specified position so that the fundamental frequency of the bending
beam subject to various supporting conditions does not change despite the addition of a mass at a
predefined position [9]. Cha used springs and masses as passive means of inducing multiple nodes
for any normal mode of an arbitrarily supported, linear elastic structure. According to the author
when the parameters of the elastically mounted masses are properly chosen, their attachment
locations can be made to coincide exactly with the nodes of the structure, thereby allowing nodes to
be imposed at multiple locations anywhere along the combined assembly [10].

As is easily understood from the work cited above, most papers are concerned with determining
the relations between the vibrational properties of systems and their physical properties. The
present paper aims to present a generative model similar to those mentioned above. However, it
differs from the previous ones in that it includes two continua connected by a discrete spring–mass
system, performing longitudinal and transversal vibrations. The model that will be given here can
be reduced into well-known simple and combined systems. To generalize obtained results, a non-
dimensional analysis has been carried out. Furthermore, the limit values of physical parameters
for which the system reduce into subsystems have been obtained.
2. Equations of motion and frequency equation

Consider the system shown in Fig. 1, which consists of a rod, a lumped mass, two linear springs
and a beam. Assume that the rod and the beam have the lengths of L1 and L2; and they are made
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Fig. 1. The combined system.
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of uniform and isotropic materials, having constant cross-sectional areas denoted by A1 and A2;
respectively. The volumetric density and Young’s modulus of the rod material are r1 and E1;
while those of the beam are r2 and E2: The mass of lumped body is M, and the stiffness rates of
springs by which the mass M is connected with the rod and the beam are k1 and k2; respectively.
This system is conservative because there are no external and damping forces. Governing
equations of motion of the system can be given directly as

utt ¼ c2uxx; c2 ¼
E1

r1

; (1)

vtt ¼ �b2vx̄x̄x̄x̄; b2
¼

E2I2

r2A2
; (2)

M €y þ k1ðy � uðL1; tÞÞ þ k2ðy � vðL2; tÞÞ ¼ 0 (3)

along with the associated boundary conditions for the rod and the beam

uð0; tÞ ¼ 0; (4a)

E1A1uxðL1; tÞ ¼ k1ðy � uðL1; tÞÞ; (4b)

vð0; tÞ ¼ 0; (4c)

vx̄ð0; tÞ ¼ 0; (4d)

E2I2vx̄x̄ðL2; tÞ ¼ 0; (4e)

E2I2vx̄x̄x̄ðL2; tÞ þ k2ðy � vðL2; tÞÞ ¼ 0; (4f)

where y ¼ yðtÞ describes the displacement of lumped mass, and u ¼ uðx; tÞ represents the
longitudinal displacement of any cross-section at x, while v ¼ vðx̄; tÞ denotes the transversal
displacement of any cross-section at x̄ (see Fig. 1). The subscripts x, x̄ indicate partial derivatives
of relevant dependent variables, whereas dots denote derivatives with respect to time.
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H. Gökdaǧ, O. Kopmaz / Journal of Sound and Vibration 284 (2005) 1203–12161206
Since synchronous motions of the system are to be investigated, one can use the method of
separation of variables, which proposes the solutions in the form

uðx; tÞ ¼ UðxÞTðtÞ; (5)

vðx̄; tÞ ¼ V ðx̄ÞTðtÞ (6)

and

yðtÞ ¼ Y 0TðtÞ (7)

for rod, beam and lumped mass vibrations, respectively. Considering the boundary conditions
(4a), (4c) and (4d) the conventional procedure of this method leads to the eigenfunctions for rod
and beam, respectively, as

UðxÞ ¼ B̄ sin
o
c

x (8)

and

V ðx̄Þ ¼ C̄fcosðdx̄Þ � coshðdx̄Þg þ D̄fsinðdx̄Þ � sinhðdx̄Þg; (9)

where o is the natural frequency of free vibrations of the system, while B̄; C̄; D̄ are
unknown amplitude coefficients, and d ¼

ffiffiffiffiffiffiffiffiffi
o=b

p
: By substituting Eqs. (7)–(9) into (3),

(4b), (4e) and (4f), the following relationships which contain four unknowns Y 0; B̄; C̄; D̄ are
obtained:

Y 0 1þ
k1

k2
�

M

k2
o2

� �
� B̄

k1

k2
sin l� C̄fcos g� cosh gg � D̄fsin g� sinh gg ¼ 0; (10)

Y 0 � B̄ sin lþ
l
x1

cos l
� �

¼ 0; (11)

C̄fcos gþ cosh gg þ D̄fsin gþ sinh gg ¼ 0; (12)

Y 0 þ C̄fa sin g� a sinh g� cos gþ cosh gg

þ D̄f�a cos g� a cosh g� sin gþ sinh gg ¼ 0; ð13Þ

where

l ¼ o
r1

E1

� �1=2

L1; g ¼ o1=2 r2A2

E2I2

� �1=4

L2; a ¼
E2I2

k2L3
2

g3: (14)

Eqs. (10)–(13) can be written in matrix form as follows:

a11 a12 a13 a14

1 0 a23 a24

0 0 a33 a34

1 a42 0 0

2
6664

3
7775

Y 0

B̄

C̄

D̄

8>>><
>>>:

9>>>=
>>>;

¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;
; (15)
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where

a11 ¼ 1þ
k1

k2
�

M

k2
o2

� �
; a12 ¼ �

k1

k2
sin l; a13 ¼ �fcos g� cosh gg;

a14 ¼ �fsin g� sinh gg; a23 ¼ fa sin g� a sinh g� cos gþ cosh gg;

a24 ¼ f�a cos g� a cosh g� sin gþ sinh gg; a33 ¼ fcos gþ cosh gg;

a34 ¼ fsin gþ sinh gg; a42 ¼ � sin lþ
E1A1

k1L1
l cos l

� �
: ð16Þ

To obtain non-trivial solutions, the determinant of coefficient matrix of Eq. (15) must be zero.
Hence, the frequency equation of system is obtained as

DET ¼ ðsin g cosh g� cos g sinh gÞ ðMo2Þ sin lþ ðMo2 � k1Þ
E1A1

k1L1
l cos l

� �

þ
E2I2

k2L3
2

g3ð1þ cos g cosh gÞ ðMo2 � k2Þ sin lþ ðMo2 � k1 � k2Þ
E1A1

k1L1
l cos l

� �
¼ 0;

ð17Þ

where the parentheses within the brackets represent the effects of discrete elements on the system
frequencies. When both of the continuous elements, i.e. the rod and the beam, participate in
vibratory motion, it is immaterial whether the terms explicitly including o in the parentheses are
expressed in terms of g or l: Accordingly, Eq. (17) can have one of the following forms:

DET1 ¼ ðsin g cosh g� cos g sinh gÞ
m1

x1
l2

� �
sin lþ

m1l
2

x1x2
�

1

x2

� �
l cos l

� �

þ að1þ cos g cosh gÞ
m1

x2
l2 � 1

� �
sin lþ

m1l
2

x1x2
�

1

x1
�

1

x2

� �
l cos l

� �
¼ 0 ð18Þ

or

DET2 ¼ ðsin g cosh g� sinh g cos gÞ
m̄1

x̄2
g4

� �
sin lþ

m̄1

x̄2x̄1
g4 �

1

x̄2

� �
x̄l cos l

� �

þ að1þ cos g cosh gÞ
m̄1

x̄2
g4 � 1

� �
sin lþ

m̄1

x̄2x̄1
g4 �

1

x̄1
�

1

x̄2

� �
x̄l cos l

� �
¼ 0; ð19Þ

where

x ¼
E2I2L1

L3
2E1A1

; x̄ ¼ x�1; m1 ¼
M

r1A1L1
; m̄1 ¼

M

r2A2L2
; x1 ¼

k1

E1A1=L1
; x̄1 ¼

k1

E2I2=L3
2

;

x2 ¼
k2

E1A1=L1
; x̄2 ¼

k2

E2I2=L3
2

; a ¼
x
x2

g3 ¼
1

x̄2
g3: ð20Þ

Let

m ¼
r2A2L2

r1A1L1
; m̄ ¼ m�1: (21)
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If one considers the definitions given by Eqs. (20) and (21) together the following relationships
among some non-dimensional parameters can be concluded

x̄1 ¼
x1
x
; x̄2 ¼

x2
x
; m̄1 ¼

m1

m
: (22)

Furthermore, for finite l and g; these two parameters can always be related to each other as
follows:

l ¼ g2
m̄
x̄
; g ¼ l1=2

m
x

� �1=2

: (23)
2.1. Case study

In this section some limit cases will be discussed by utilizing two different forms of Eq. (17)
which can be viewed as generating equations that cover all the possible situations encountered by
changing of the non-dimensional parameters. For instance, for the first five cases to be studied in
what follows Eq. (18) is the appropriate form of frequency equation while Eq. (19) is used in the
last case since Eq. (18) leads to some mathematical handicaps for that case.

Case 1 (Uncoupling of Systems (m1 ¼ 0; x1 ¼ 0; while x2;m; x are not zero)): In this case taking
x1 and m1 equal to zero means that no physical connection between rod and beam exists as shown
in Fig. 2. The frequency Eq. (18) takes the following form when m1; x1 ! 0 at the limit:

lim
m1;x1!0

DET1 ¼ f1þ cos g cosh gg cos l ¼ 0: (24)

As is immediately seen from Eq. (24), the value of g rendering the parenthesis zero is the non-
dimensional frequency of beam, while the roots of cos l are the eigenvalues of rod.

Case 2 (No connection between beam and lumped mass (x2 ¼ 0; while other parameters
are non-zero)): This case also shows another type of uncoupled system as shown in Fig. 3. In
the limit case there exist two separate systems, one of which is rod–mass attachment system,
while the other is vibrating beam, alone. The frequency equation related to this case is found as
follows:

lim
x2!0

DET1 ¼ f1þ cos g cosh gg m1l sin lþ
m1l

2

x1
� 1

� �
cos l

� �
¼ 0: (25)

Here, the formula given in brackets enables us to find the eigenvalues of rod–lumped mass
attachment system, while the rest delivers those of transversally vibrating beam.

Case 3 (No intermediate spring (x1 ¼ 0 only)): In contrast to the previous case, lumped mass
remains attached to beam and is separated from rod by decreasing stiffness of intermediate spring
infinitely so that it affects no longer the system (see Fig. 4). Consequently, the frequency equation
giving the eigenvalues of both rod and beam–lumped mass combined system is

lim
x1!0

DET1 ¼ cos l að1þ cos g cosh gÞ
m1l

2

x2
� 1

� �
þ ðsin g cosh g� cos g sinh gÞ

m1l
2

x2

� �" #
¼ 0:

(26)
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The first factor on the right-hand side of Eq. (26) is the term giving the eigenvalues of a
longitudinally vibrating rod, while the bracket yields the eigenvalues of a beam with spring–mass
attachment.
,x ,x(u E,)t
1 1

no friction
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Fig. 3. Uncoupled system corresponding to Case 2 (x2 ¼ 0).
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Fig. 4. Uncoupled system corresponding to Case 3 (x1 ¼ 0).
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Fig. 2. Uncoupled system corresponding to Case 1 (m1 ¼ 0; x1 ¼ 0 with x2; m; x being not zero).
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Case 4 (No lumped mass (m1 ¼ 0 only)):

lim
m1!0

DET1 ¼ að1þ cos g cosh gÞ sin lþ
x2 þ x1
x2x1

� �
l cos l

� �

þ ðsin g cosh g� cos g sinh gÞ
l
x2

cos l
� �

¼ 0: ð27Þ

Similar to above considerations, the limit case figure and frequency equation of the system are
represented by Fig. 5 and Eq. (27), respectively.

Case 5 (Beam with comparatively high stiffness (x ! 1 only)): For this case, the beam acts as a
fixed rigid wall and does not participate in general motion of the system. Hence, the complete
system of Fig. 1 reduces to one with longitudinally vibrating rod-linear spring–lumped mass
attachment (see Fig. 6). Frequency equation of the relevant system is

lim
x!1

DET1 ¼
m1l

2

x2
� 1

� �
sin lþ

m1l
2

x2x1
�
x2 þ x1
x2x1

� �
l cos l ¼ 0: (28)

Case 6 (Rod with comparatively high stiffness): While Eq. (18) is viable for numerical
calculations of eigenvalues provided the rod has finite stiffness, it leads to mathematical
complications in the extreme case corresponding to an ideally rigid rod. Therefore Eq. (19) is
preferable for this case. Dividing all terms of Eq. (19) by the product x̄l; then limiting for l ! 0;
x E A L, , ,1 1 1 1
k1

)u x( ,t
k2

AE I, , ,2 2 2 L, 22

x
(v x t, )

�

�

Fig. 5. Rod–beam system connected by spring attachments (m1 ¼ 0; corresponding to Case 4).

x E A L, , ,1 1 1 1
k1

)u x( , t

no friction

M
k2

y )t(�

Fig. 6. Rod with spring–mass attachment for Case 5 (x ! 1).
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x̄ ! 1 and rearranging the remaining terms yields

lim
l!0;x̄!1

DET2 ¼ āð1þ cos g cosh gÞfx̄2 þ x̄1 � m̄1g
4g

þ ðcosh g sin g� cos g sinh gÞfx̄1 � g4m̄1g ¼ 0: ð29Þ

The results associated with this case are given in Table 5.
3. Numerical results

In this section, one will show when some of those limit cases mentioned above practically occur.
To this end, comparisons will be made between the eigenvalues obtained by Eqs. (18) or (19) and
those obtained through reduced equations in the limit cases. For Case 1, for example, for what
numerical values of m1 and x1 uncoupling take place will be introduced, while other non-
dimensional parameters are fixed. Several MATLAB codes were written to carry out numerical
computations.

Table 1 shows how the first three eigenvalues of the complete system in Fig. 1 vary with regard
to (m1; x1). Observation of decrease in the eigenvalues versus increase in m1 for a fixed x1 or
decrease in x1 for a fixed m1 is consistent with the dynamic behaviour of the system. The roots
obtained from Eq. (18) converge to the ones from Eq. (24) with simultaneous decrease in x1 and
m1: In the table, bold-typed numbers denote the eigenvalues of the uncoupled system given by
Eq. (24). Thus, 1.5708 and 4.7124 are the first and second eigenvalues of longitudinally vibrating
rod, respectively. Similarly, 1.1112 gives the first eigenvalue of the transversely vibrating
beam in terms of l (see Eq. (23)). The values for x and m given in Table 1 are chosen considering
practical applications. However, to examine their effects on the change of the system’s
eigenvalues, in addition to Table 1(a) two more tables were introduced, one of which is Table
1(b) where m=x ¼ 100; the other one is Table 1(c) with m=x ¼ 1000: Nevertheless, their effects to
the decoupling of the system are negligible. Since x2 does not appear in Eq. (24), it has no effect on
the conversion of the system in Fig. 1 into the one shown in Fig. 2. Consequently, since the
absolute errors are small enough to ignore, it can be concluded that separation of the system, i.e.
the rod vibrates on its own and so does the beam, is encountered practically when the numbers
(m1; x1) are both less than or about 0.001, simultaneously, regardless of the m=x ratio and the x2
value.

In Table 2 are presented the variations of the first three eigenvalues of the combined system
with respect to x1 and x2 for three different values of m1: The m and x ratios are fixed in order to
investigate how the attachment properties affect decoupling of the two systems. With x2 relatively
small, the complete system of Fig. 1 separates into two independent vibrating systems, one of
which is the rod and spring–mass attachment system and the other is the vibrating beam. Here, to
find out whether changing the mass ratio (m1) of the lumped mass will influence the separation of
the systems, an interval for m1 ranging in 1; . . . ; 0:01 is introduced. Except for the value 1.1119
which represents the first eigenvalue of the beam, all other bold-typed numbers given in the
rightmost column of Table 1 belong to the rod–spring mass attachment system. It can be clearly
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Table 1

Variation of the first three eigenvalues (l) of the combined system in Fig. 1 with respect to m1 and x1 with the other parameters fixed (Case 1)

m1 x1

1 0.1 0.01 0.001 0.0001

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

eig. eig. eig. eig. eig. eig. eig. eig. eig. eig. eig. eig. eig. eig. eig.

(a)

1 0.6867 2.1044 2.2311 0.3348 1.6342 2.2177 0.1803 1.5772 2.2174 0.1541 1.5714 2.2174 0.1512 1.5709 2.2174

0.1 1.3796 2.1740 3.3062 0.9686 1.6563 2.3891 0.5358 1.5774 2.3578 0.4584 1.5714 2.3552 0.4498 1.5709 2.3550

0.01 1.5271 2.1775 4.6842 1.4872 1.7812 4.4551 1.0784 1.5781 3.6688 0.9434 1.5714 3.5861 0.9278 1.5709 3.5780

0.001 1.5410 2.1778 4.7280 1.5249 1.8240 4.7218 1.2402 1.5787 4.7143 1.1077 1.5714 4.7126 1.0918 1.5709 4.7124

0.0001 1.5424 2.1778 4.7316 1.5279 1.8284 4.7230 1.2584 1.5788 4.7143 1.1273 1.5714 4.7126 1.1114 1.5709 4.7124

First eig. by Eq. (24) 1.1112

m ¼ 0:1; x ¼ 0:01; x2 ¼ 0:1 Second eig. by Eq. (24) 1.5708

Third eig. by Eq. (24) 4.7124

(b)

1 0.5814 0.8269 2.1182 0.3112 0.7537 1.6344 0.1695 0.7456 1.5772 0.1450 0.7448 1.5714 0.1422 0.7447 1.5709

0.1 1.6490 1.4818 2.2918 0.5217 1.3563 1.6927 0.3413 1.1596 1.5776 0.2983 1.1340 1.5714 0.2934 1.1315 1.5709

0.01 1.6523 1.6119 2.2932 0.5488 1.5970 2.2366 0.3927 1.5764 2.1532 0.3503 1.5714 2.1336 0.3453 1.5709 2.1314

0.001 1.6526 1.6236 2.2933 0.5513 1.6012 2.2500 0.3985 1.5765 2.2079 0.3565 1.5714 2.1998 0.3515 1.5709 2.1989

0.0001 1.6527 1.6247 2.2933 0.5515 1.6016 2.2511 0.3991 1.5766 2.2114 0.3571 1.5714 2.2039 0.3521 1.5709 2.2031

First eig. by Eq. (24) 0.3516

m ¼ 1; x ¼ 0:01; x2 ¼ 0:1 Second eig. by Eq. (24) 1.5708

Third eig. by Eq. (24) 2.2034

(c)

1 0.2062 0.6896 0.7774 0.1652 0.4438 0.7356 0.1079 0.3668 0.7340 0.0943 0.3586 0.7338 0.0928 0.3578 0.7338

0.1 0.2072 0.7205 1.4806 0.1738 0.7050 1.3377 0.1242 0.6808 1.0844 0.1108 0.6747 1.0485 0.1092 0.6740 1.0449

0.01 0.2073 0.7211 1.6132 0.1746 0.7102 1.5975 0.1260 0.6982 1.5764 0.1127 0.6956 1.5714 0.1111 0.6954 1.5709

0.001 0.2073 0.7211 1.6250 0.1747 0.7106 1.6016 0.1262 0.6993 1.5765 0.1129 0.6969 1.5714 0.1113 0.6967 1.5709

0.0001 0.2073 0.7211 1.6262 0.1747 0.7106 1.6019 0.1262 1.6994 1.5766 0.1129 0.6971 1.5714 0.1114 0.6968 1.5709

First eig. by Eq. (24) 0.1112

m ¼ 10; x ¼ 0:01; x2 ¼ 0:1 Second eig. by Eq. (24) 0.6968

Third eig. by Eq. (24) 1.5708
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Table 2

Variation of the first three eigenvalues (l) of the combined system in Fig. 1 with respect to x1 and x2 with the other parameters fixed (Case 2)

x1 x2

1 0.1 0.01 0.001 0.0001 Eigenvalues by Eq. (25)

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

eig. eig. eig. eig. eig. eig. eig. eig. eig. eig. eig. eig. eig. eig. eig.

(a)

1 0.6884 2.1150 4.2276 0.6867 2.1044 2.2311 0.6806 1.2787 2.1173 0.6769 1.1297 2.1171 0.6763 1.1137 2.1171 0.6763 1.1119 2.1171

0.5 0.5838 1.8720 4.2270 0.5809 1.8711 2.2199 0.5717 1.2787 1.8728 0.5667 1.1297 1.8727 0.5660 1.1137 1.8727 0.5659 1.1119 1.8727

0.1 0.3422 1.6342 4.2264 0.3348 1.6342 2.2177 0.3130 1.2786 1.6343 0.3027 1.1297 1.6343 0.3012 1.1137 1.6343 0.3011 1.1119 1.6343

0.05 0.2739 1.6026 4.2263 0.2639 1.6026 2.2175 0.2345 1.2786 1.6026 0.2203 1.1297 1.6026 0.2184 1.1137 1.6026 0.2181 1.1119 1.6026

0.01 0.1954 1.5772 4.2262 0.1803 1.5772 2.2174 0.1318 1.2785 1.5772 0.1043 1.1297 1.5772 0.1000 1.1137 1.5772 0.0995 1.1119 1.5772

m ¼ 0:1; x ¼ 0:01; m1 ¼ 1

(b)

1 1.3824 2.8723 4.5790 1.3796 2.1740 3.3062 1.2661 1.4167 3.1664 1.1296 1.3996 3.1565 1.1137 1.3987 3.1555 1.1119 1.3986 3.1554

0.5 1.3390 2.3029 4.5620 1.3364 2.0676 2.7418 1.2573 1.3881 2.4656 1.1296 1.3601 2.4531 1.1137 1.3588 2.4519 1.1119 1.3587 2.4518

0.1 0.9704 1.6587 4.5282 0.9686 1.6563 2.3891 0.9567 1.2967 1.6669 0.9391 1.1301 1.6647 0.9351 1.1137 1.6645 0.9346 1.1119 1.6645

0.05 0.7872 1.6082 4.5218 0.7777 1.6078 2.3702 0.7310 1.2911 1.6098 0.6937 1.1299 1.6093 0.6876 1.1137 1.6093 0.6869 1.1119 1.6093

0.01 0.5642 1.5774 4.5163 0.5358 1.5774 2.3578 0.4137 1.2880 1.5774 0.3296 1.1298 1.5774 0.3162 1.1137 1.5774 0.3146 1.1119 1.5774

m ¼ 0:1; x ¼ 0:01; m1 ¼ 0:1
(c)

1 1.5342 3.5307 4.8090 1.5271 2.1775 4.6842 1.2720 1.5645 4.6565 1.1296 1.5556 4.6534 1.1137 1.5549 4.6531 1.1119 1.5549 4.6531

0.5 0.5322 3.1306 4.7802 1.5244 2.1153 4.6801 1.2704 1.5644 4.6376 1.1296 1.5552 4.6321 1.1137 1.5545 4.6315 1.1119 1.5545 4.6315

0.1 0.5050 1.9628 4.7316 1.4872 1.7812 4.4551 1.2568 1.5639 3.3133 1.1294 1.5515 3.1764 1.1137 1.5505 3.1628 1.1119 1.5504 3.1613

0.05 0.4208 1.6733 4.7225 1.3955 1.6414 4.0432 1.2380 1.5631 2.4810 1.1292 1.5437 2.2869 1.1137 1.5417 2.2683 1.1119 1.5414 2.2662

0.01 1.0787 1.5784 4.7145 1.0784 1.5781 3.6688 1.0741 1.5373 1.6094 1.0320 1.1379 1.5816 0.9973 1.1137 1.5814 0.9924 1.1119 1.5813

m ¼ 0:1; x ¼ 0:01; m1 ¼ 0:01
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seen from those tables that x2 ¼ 0:01 can be regarded as the limit value indicating separation
point.

Numerical results for the Case 3 will not be given here because this case is dynamically
analogous to Case 2.

Table 3 which corresponds to Case 4 shows the change of the eigenvalues of the combined
system with regard to m1; while other parameters are fixed. The rightmost column denotes the
eigenvalues obtained from Eq. (27). Table 3 indicates that lumped mass no longer affects the
complete system’s frequencies for the values lower than m1 ¼ 0:001:

Table 4, on the other hand, expresses after which value of x the beam acts as a rigid wall and
does not participate in the system’s total motion, and so in the frequency. Clearly, x ¼ 100 can be
regarded as the limit value of Case 5.

Table 5 indicates which values of the parameters x; x1; x2 convert the system in Fig. 1 into the
one shown in Fig. 7. According to the definitions in Eq. (20), as the longitudinal stiffness of the
rod increases three stiffness parameters approach to zero simultaneously. However, different from
Eq. (18), Eq. (19) provides us with the same limit conditions by changing only one parameter,
namely x̄:
Table 4

Variation of the first five eigenvalues (l) of the combined system in Fig. 1 with respect to x with the other parameters

fixed (Case 5)

x 0.01 0.1 1 10 100 Eigenvalues by

Eq. (28)

1st eig. 0.4005 0.5641 0.6106 0.6154 0.6159 0.61594

2nd eig. 0.8261 1.3004 1.6371 1.6371 1.6371 1.6371

3rd eig. 1.6371 1.6373 3.5733 4.7337 4.7337 4.7337

4th eig. 2.3020 4.7337 4.7337 7.8667 7.8667 7.8667

5th eig. 4.7337 6.9969 7.8667 11.0047 11.0047 11.005

m ¼ 1; m1 ¼ 0:5; x1 ¼ 0:1; x2 ¼ 0:1

Table 3

Variation of the first five eigenvalues (l) of the combined system in Fig. 1 with respect to m1 (Case 4)

m1 1 0.1 0.01 0.001 0.0001 Eigenvalues by

Eq. (27)

1st eig. 0.3112 0.5217 0.5488 0.5513 0.5515 0.55156

2nd eig. 0.7537 1.3563 1.5970 1.6012 1.6016 1.6016

3rd eig. 1.6344 1.6927 2.2366 2.2500 2.2511 2.2512

4th eig. 2.3000 2.3273 4.4181 4.7217 4.7229 4.7230

5th eig. 4.7336 4.7345 4.8026 6.1822 6.1857 6.1861

m ¼ 1; x ¼ 0:01; x1 ¼ 0:1; x2 ¼ 0:1
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Fig. 7. Beam with spring–mass attachment system corresponding to Case 6 (x ! 1).

Table 5

The variation of the first five eigenvalues (g) of the combined system in Fig. 1 with respect to x̄ (Case 6)

x̄ 0.01 1 10 100 1000 10000 Limit values of

x 100 1 0.1 0.01 0.001 0.0001 g from

x1 10 0.1 0.01 0.001 0.0001 0.00001 Eq. (29)

x2 10 0.1 0.01 0.001 0.0001 0.00001

1st eig. 0.5060 0.7814 0.7909 0.7918 0.7919 0.7919 0.7919

2nd eig. 0.6746 1.2795 1.8903 1.8903 1.8903 1.8903 1.8903

3rd eig. 0.7925 1.8903 2.2333 3.9641 4.6951 4.6951 4.6951

4th eig. 0.9429 2.1757 3.8612 4.6951 7.0480 7.855 7.855

5th eig. 1.0858 2.8048 4.6951 6.8648 7.8550 10.996 10.996

m̄ ¼ 1; m̄1 ¼ 0:5; x̄1 ¼ 0:1; x̄2 ¼ 0:1; m ¼ 1; m1 ¼ 0:5
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4. Conclusions

The present study concerns a combined system consisting of a rod and a beam which vibrate
longitudinally and transversely, respectively, and are connected via a double spring–mass system.
Since such systems have many engineering applications, their vibrational properties must be
examined. However, determining the vibration characteristics of all the individual components
that make up a combined system is not always enough to get insight into the overall system
behaviour. Therefore, the derivation of the frequency equation associated with a combined system
in terms of meaningful non-dimensional parameters, such as mass and stiffness ratios will
certainly be useful. While such a relationship is helpful in understanding the effects of physical
properties of individual components on the combined system, it can also be used for determining
parameter values for which the interaction of system components weakens or vanishes. The work
performed so far on one-dimensional structural elements with attachments has developed in two
main directions, i.e., rods and beams, in other words, longitudinally or transversely vibrating
elements. In this regard the present study can be considered as an attempt to bridge the gap
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between two trends. To the authors’ knowledge, the combined system studied here and the
frequency equations derived in this paper are novel. The results presented here are thought to be
useful to design engineers.
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